Run
10453341

Run 10453341

Task 9946 (Supervised Classification) wdbc Uploaded 18-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1. study_8566
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClass ifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.6979775903513943
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth12
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features17
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes41
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.48800532757608545
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.14744028156065048
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.23412922200326555
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.46830102227168746
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.3662712714987803
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators419
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4933
Per class
Cross-validation details (10-fold Crossvalidation)
0.0002 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.4675 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.4676 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.6274 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
569
Per class
Cross-validation details (10-fold Crossvalidation)
0.6274 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.9526 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.9998 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.4835 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.4835 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)