Run
10449706

Run 10449706

Task 14965 (Supervised Classification) bank-marketing Uploaded 07-04-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standa rdScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing ._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.R andomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.preprocessing._encoders.OneHotEncoder(11)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(11)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(11)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_sparsetrue
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [true, false, false, false, false, true, false, false, false, true, false, true, true, true, true, false]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [false, true, true, true, true, false, true, true, true, false, true, false, false, false, false, true]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.ensemble.forest.RandomForestClassifier(63)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(63)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(63)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(63)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(63)_max_features0.08362628567277053
sklearn.ensemble.forest.RandomForestClassifier(63)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(63)_min_impurity_decrease0
sklearn.ensemble.forest.RandomForestClassifier(63)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(63)_min_samples_leaf2
sklearn.ensemble.forest.RandomForestClassifier(63)_min_samples_split4
sklearn.ensemble.forest.RandomForestClassifier(63)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(63)_n_estimators300
sklearn.ensemble.forest.RandomForestClassifier(63)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(63)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(63)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(63)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(63)_warm_startfalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.93 ± 0.0069
Per class
Cross-validation details (10-fold Crossvalidation)
0.8858 ± 0.0042
Per class
Cross-validation details (10-fold Crossvalidation)
0.3779 ± 0.0248
Cross-validation details (10-fold Crossvalidation)
0.1848 ± 0.0188
Cross-validation details (10-fold Crossvalidation)
0.138 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.2066 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9033 ± 0.003
Cross-validation details (10-fold Crossvalidation)
45211
Per class
Cross-validation details (10-fold Crossvalidation)
0.8892 ± 0.005
Per class
Cross-validation details (10-fold Crossvalidation)
0.9033 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.5206 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.6679 ± 0.011
Cross-validation details (10-fold Crossvalidation)
0.3214 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2535 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.7889 ± 0.0114
Cross-validation details (10-fold Crossvalidation)
0.6421 ± 0.0106
Cross-validation details (10-fold Crossvalidation)