Run
10444166

Run 10444166

Task 125920 (Supervised Classification) dresses-sales Uploaded 06-04-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.Stand ardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessin g._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble._forest .RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copytrue
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
sklearn.preprocessing._encoders.OneHotEncoder(19)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(19)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(19)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(19)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(19)_sparsetrue
sklearn.impute._base.SimpleImputer(13)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(13)_copytrue
sklearn.impute._base.SimpleImputer(13)_fill_valuenull
sklearn.impute._base.SimpleImputer(13)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(13)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(13)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features0.5095143283819239
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf5
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split5
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state1
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [false, false, true, false, false, false, false, false, false, false, false, false]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [true, true, false, true, true, true, true, true, true, true, true, true]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(6)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(6)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.62 ± 0.0975
Per class
Cross-validation details (10-fold Crossvalidation)
0.6003 ± 0.0496
Per class
Cross-validation details (10-fold Crossvalidation)
0.1758 ± 0.1041
Cross-validation details (10-fold Crossvalidation)
0.0807 ± 0.0628
Cross-validation details (10-fold Crossvalidation)
0.4522 ± 0.026
Cross-validation details (10-fold Crossvalidation)
0.4873
Cross-validation details (10-fold Crossvalidation)
0.614 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
500
Per class
Cross-validation details (10-fold Crossvalidation)
0.6042 ± 0.0558
Per class
Cross-validation details (10-fold Crossvalidation)
0.614 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
0.9815
Cross-validation details (10-fold Crossvalidation)
0.928 ± 0.0533
Cross-validation details (10-fold Crossvalidation)
0.4936
Cross-validation details (10-fold Crossvalidation)
0.4847 ± 0.0244
Cross-validation details (10-fold Crossvalidation)
0.9821 ± 0.0494
Cross-validation details (10-fold Crossvalidation)
0.5845 ± 0.0509
Cross-validation details (10-fold Crossvalidation)