Run
10438624

Run 10438624

Task 9952 (Supervised Classification) phoneme Uploaded 05-04-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing._data.StandardScaler,randomforestclass ifier=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(1)_copytrue
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
sklearn.impute._base.SimpleImputer(13)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(13)_copytrue
sklearn.impute._base.SimpleImputer(13)_fill_valuenull
sklearn.impute._base.SimpleImputer(13)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(13)_strategy"median"
sklearn.impute._base.SimpleImputer(13)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,randomforestclassifier=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"entropy"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features0.16601800876480866
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf2
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split20
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators300
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state1
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9509 ± 0.01
Per class
Cross-validation details (10-fold Crossvalidation)
0.8891 ± 0.0149
Per class
Cross-validation details (10-fold Crossvalidation)
0.731 ± 0.0366
Cross-validation details (10-fold Crossvalidation)
0.538 ± 0.0229
Cross-validation details (10-fold Crossvalidation)
0.199 ± 0.0081
Cross-validation details (10-fold Crossvalidation)
0.4147 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.8897 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
5404
Per class
Cross-validation details (10-fold Crossvalidation)
0.8887 ± 0.0151
Per class
Cross-validation details (10-fold Crossvalidation)
0.8897 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
0.8732 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.4798 ± 0.0194
Cross-validation details (10-fold Crossvalidation)
0.4554 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.2901 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.6372 ± 0.0243
Cross-validation details (10-fold Crossvalidation)
0.8613 ± 0.0207
Cross-validation details (10-fold Crossvalidation)