Run
10438367

Run 10438367

Task 37 (Supervised Classification) diabetes Uploaded 05-04-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,randomforestclassi fier=sklearn.ensemble.forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(13)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(13)_copytrue
sklearn.impute._base.SimpleImputer(13)_fill_valuenull
sklearn.impute._base.SimpleImputer(13)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(13)_strategy"median"
sklearn.impute._base.SimpleImputer(13)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(1)_verbosefalse
sklearn.preprocessing.data.StandardScaler(39)_copytrue
sklearn.preprocessing.data.StandardScaler(39)_with_meantrue
sklearn.preprocessing.data.StandardScaler(39)_with_stdtrue
sklearn.ensemble.forest.RandomForestClassifier(62)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(62)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(62)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(62)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(62)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(62)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(62)_min_impurity_decrease1e-07
sklearn.ensemble.forest.RandomForestClassifier(62)_min_impurity_split0.01
sklearn.ensemble.forest.RandomForestClassifier(62)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(62)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(62)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(62)_n_estimators500
sklearn.ensemble.forest.RandomForestClassifier(62)_n_jobs-1
sklearn.ensemble.forest.RandomForestClassifier(62)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(62)_random_state1
sklearn.ensemble.forest.RandomForestClassifier(62)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(62)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8301 ± 0.0455
Per class
Cross-validation details (10-fold Crossvalidation)
0.7739 ± 0.052
Per class
Cross-validation details (10-fold Crossvalidation)
0.4965 ± 0.1169
Cross-validation details (10-fold Crossvalidation)
0.3135 ± 0.0612
Cross-validation details (10-fold Crossvalidation)
0.3179 ± 0.0233
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7773 ± 0.0508
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7731 ± 0.0541
Per class
Cross-validation details (10-fold Crossvalidation)
0.7773 ± 0.0508
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.6995 ± 0.0515
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.3974 ± 0.0259
Cross-validation details (10-fold Crossvalidation)
0.8337 ± 0.0548
Cross-validation details (10-fold Crossvalidation)
0.7416 ± 0.0569
Cross-validation details (10-fold Crossvalidation)