Run
10438096

Run 10438096

Task 14965 (Supervised Classification) bank-marketing Uploaded 31-03-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline. Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sk learn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)Probability calibration with isotonic regression or logistic regression. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on :term:`predict_proba`.
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meantrue
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.svm._classes.SVC(3)_C1.0
sklearn.svm._classes.SVC(3)_break_tiesfalse
sklearn.svm._classes.SVC(3)_cache_size200
sklearn.svm._classes.SVC(3)_class_weightnull
sklearn.svm._classes.SVC(3)_coef00.0
sklearn.svm._classes.SVC(3)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(3)_degree3
sklearn.svm._classes.SVC(3)_gamma"scale"
sklearn.svm._classes.SVC(3)_kernel"linear"
sklearn.svm._classes.SVC(3)_max_iter-1
sklearn.svm._classes.SVC(3)_probabilityfalse
sklearn.svm._classes.SVC(3)_random_state43144
sklearn.svm._classes.SVC(3)_shrinkingtrue
sklearn.svm._classes.SVC(3)_tol0.001
sklearn.svm._classes.SVC(3)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.impute._base.SimpleImputer(15)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(15)_copytrue
sklearn.impute._base.SimpleImputer(15)_fill_valuenull
sklearn.impute._base.SimpleImputer(15)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(15)_strategy"mean"
sklearn.impute._base.SimpleImputer(15)_verbose0
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)_cv5
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)_method"sigmoid"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8694 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.865 ± 0.0028
Per class
Cross-validation details (10-fold Crossvalidation)
0.2505 ± 0.017
Cross-validation details (10-fold Crossvalidation)
0.0846 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.1614 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2066 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8908 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
45211
Per class
Cross-validation details (10-fold Crossvalidation)
0.867 ± 0.005
Per class
Cross-validation details (10-fold Crossvalidation)
0.8908 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.5206 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7811 ± 0.0067
Cross-validation details (10-fold Crossvalidation)
0.3214 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2842 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.8843 ± 0.0093
Cross-validation details (10-fold Crossvalidation)
0.5884 ± 0.0067
Cross-validation details (10-fold Crossvalidation)