Run
10438028

Run 10438028

Task 146821 (Supervised Classification) car Uploaded 31-03-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._ classes.SVC)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meantrue
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.svm._classes.SVC(3)_C1.0
sklearn.svm._classes.SVC(3)_break_tiesfalse
sklearn.svm._classes.SVC(3)_cache_size200
sklearn.svm._classes.SVC(3)_class_weightnull
sklearn.svm._classes.SVC(3)_coef00.0
sklearn.svm._classes.SVC(3)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(3)_degree3
sklearn.svm._classes.SVC(3)_gamma"scale"
sklearn.svm._classes.SVC(3)_kernel"linear"
sklearn.svm._classes.SVC(3)_max_iter-1
sklearn.svm._classes.SVC(3)_probabilitytrue
sklearn.svm._classes.SVC(3)_random_state44736
sklearn.svm._classes.SVC(3)_shrinkingtrue
sklearn.svm._classes.SVC(3)_tol0.001
sklearn.svm._classes.SVC(3)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.impute._base.SimpleImputer(15)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(15)_copytrue
sklearn.impute._base.SimpleImputer(15)_fill_valuenull
sklearn.impute._base.SimpleImputer(15)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(15)_strategy"mean"
sklearn.impute._base.SimpleImputer(15)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.936 ± 0.0164
Per class
Cross-validation details (10-fold Crossvalidation)
0.846 ± 0.0207
Per class
Cross-validation details (10-fold Crossvalidation)
0.657 ± 0.0478
Cross-validation details (10-fold Crossvalidation)
0.5897 ± 0.0392
Cross-validation details (10-fold Crossvalidation)
0.1124 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
0.229 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.8513 ± 0.0197
Cross-validation details (10-fold Crossvalidation)
1728
Per class
Cross-validation details (10-fold Crossvalidation)
0.8452 ± 0.0201
Per class
Cross-validation details (10-fold Crossvalidation)
0.8513 ± 0.0197
Cross-validation details (10-fold Crossvalidation)
1.2058 ± 0.0088
Cross-validation details (10-fold Crossvalidation)
0.4908 ± 0.0406
Cross-validation details (10-fold Crossvalidation)
0.3381 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.2338 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.6914 ± 0.0431
Cross-validation details (10-fold Crossvalidation)
0.7459 ± 0.0566
Cross-validation details (10-fold Crossvalidation)