Run
10438005

Run 10438005

Task 9971 (Supervised Classification) ilpd Uploaded 31-03-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline. Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sk learn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)Probability calibration with isotonic regression or logistic regression. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on :term:`predict_proba`.
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meantrue
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.svm._classes.SVC(3)_C1.0
sklearn.svm._classes.SVC(3)_break_tiesfalse
sklearn.svm._classes.SVC(3)_cache_size200
sklearn.svm._classes.SVC(3)_class_weightnull
sklearn.svm._classes.SVC(3)_coef00.0
sklearn.svm._classes.SVC(3)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(3)_degree3
sklearn.svm._classes.SVC(3)_gamma"scale"
sklearn.svm._classes.SVC(3)_kernel"linear"
sklearn.svm._classes.SVC(3)_max_iter-1
sklearn.svm._classes.SVC(3)_probabilityfalse
sklearn.svm._classes.SVC(3)_random_state23438
sklearn.svm._classes.SVC(3)_shrinkingtrue
sklearn.svm._classes.SVC(3)_tol0.001
sklearn.svm._classes.SVC(3)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.impute._base.SimpleImputer(15)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(15)_copytrue
sklearn.impute._base.SimpleImputer(15)_fill_valuenull
sklearn.impute._base.SimpleImputer(15)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(15)_strategy"mean"
sklearn.impute._base.SimpleImputer(15)_verbose0
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)_cv5
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(1)_method"sigmoid"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7225 ± 0.0575
Per class
Cross-validation details (10-fold Crossvalidation)
0.613 ± 0.0251
Per class
Cross-validation details (10-fold Crossvalidation)
0.0332 ± 0.0459
Cross-validation details (10-fold Crossvalidation)
0.0603 ± 0.0413
Cross-validation details (10-fold Crossvalidation)
0.374 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
0.4091 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7153 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
583
Per class
Cross-validation details (10-fold Crossvalidation)
0.669 ± 0.0779
Per class
Cross-validation details (10-fold Crossvalidation)
0.7153 ± 0.0139
Cross-validation details (10-fold Crossvalidation)
0.8641 ± 0.01
Cross-validation details (10-fold Crossvalidation)
0.9141 ± 0.0306
Cross-validation details (10-fold Crossvalidation)
0.4521 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.427 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.9446 ± 0.0243
Cross-validation details (10-fold Crossvalidation)
0.512 ± 0.017
Cross-validation details (10-fold Crossvalidation)