Run
10437985

Run 10437985

Task 9985 (Supervised Classification) first-order-theorem-proving Uploaded 31-03-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.Standa rdScaler,svc=sklearn.svm._classes.SVC)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meantrue
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.svm._classes.SVC(3)_C1.0
sklearn.svm._classes.SVC(3)_break_tiesfalse
sklearn.svm._classes.SVC(3)_cache_size200
sklearn.svm._classes.SVC(3)_class_weightnull
sklearn.svm._classes.SVC(3)_coef00.0
sklearn.svm._classes.SVC(3)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(3)_degree3
sklearn.svm._classes.SVC(3)_gamma"scale"
sklearn.svm._classes.SVC(3)_kernel"linear"
sklearn.svm._classes.SVC(3)_max_iter-1
sklearn.svm._classes.SVC(3)_probabilitytrue
sklearn.svm._classes.SVC(3)_random_state4287
sklearn.svm._classes.SVC(3)_shrinkingtrue
sklearn.svm._classes.SVC(3)_tol0.001
sklearn.svm._classes.SVC(3)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7012 ± 0.0123
Per class
Cross-validation details (10-fold Crossvalidation)
0.3707 ± 0.046
Per class
Cross-validation details (10-fold Crossvalidation)
0.1564 ± 0.0308
Cross-validation details (10-fold Crossvalidation)
0.1328 ± 0.0094
Cross-validation details (10-fold Crossvalidation)
0.2345 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.2508 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4696 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
6118
Per class
Cross-validation details (10-fold Crossvalidation)
0.422 ± 0.0281
Per class
Cross-validation details (10-fold Crossvalidation)
0.4696 ± 0.0138
Cross-validation details (10-fold Crossvalidation)
2.3 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.9351 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.3541 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3397 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.9593 ± 0.0057
Cross-validation details (10-fold Crossvalidation)
0.2494 ± 0.0199
Cross-validation details (10-fold Crossvalidation)