Run
10437957

Run 10437957

Task 2074 (Supervised Classification) satimage Uploaded 31-03-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline. Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=skle arn.svm._classes.SVC))(2)Probability calibration with isotonic regression or logistic regression. The calibration is based on the :term:`decision_function` method of the `base_estimator` if it exists, else on :term:`predict_proba`.
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC)(2)_verbosefalse
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meantrue
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.svm._classes.SVC(3)_C1.0
sklearn.svm._classes.SVC(3)_break_tiesfalse
sklearn.svm._classes.SVC(3)_cache_size200
sklearn.svm._classes.SVC(3)_class_weightnull
sklearn.svm._classes.SVC(3)_coef00.0
sklearn.svm._classes.SVC(3)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(3)_degree3
sklearn.svm._classes.SVC(3)_gamma"scale"
sklearn.svm._classes.SVC(3)_kernel"linear"
sklearn.svm._classes.SVC(3)_max_iter-1
sklearn.svm._classes.SVC(3)_probabilityfalse
sklearn.svm._classes.SVC(3)_random_state187
sklearn.svm._classes.SVC(3)_shrinkingtrue
sklearn.svm._classes.SVC(3)_tol0.001
sklearn.svm._classes.SVC(3)_verbosefalse
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(2)_cv5
sklearn.calibration.CalibratedClassifierCV(base_estimator=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing._data.StandardScaler,svc=sklearn.svm._classes.SVC))(2)_method"sigmoid"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9697 ± 0.005
Per class
Cross-validation details (10-fold Crossvalidation)
0.8666 ± 0.0172
Per class
Cross-validation details (10-fold Crossvalidation)
0.8402 ± 0.0201
Cross-validation details (10-fold Crossvalidation)
0.7832 ± 0.0122
Cross-validation details (10-fold Crossvalidation)
0.0814 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.2701 ± 0
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
6430
Per class
Cross-validation details (10-fold Crossvalidation)
0.8648 ± 0.0175
Per class
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
2.4834 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.3013 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.3675 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1889 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.5141 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.831 ± 0.021
Cross-validation details (10-fold Crossvalidation)