Issue | #Downvotes for this reason | By |
---|
sklearn.linear_model._base.LinearRegression(1) | Ordinary least squares Linear Regression. LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. |
sklearn.linear_model._base.LinearRegression(1)_copy_X | true |
sklearn.linear_model._base.LinearRegression(1)_fit_intercept | true |
sklearn.linear_model._base.LinearRegression(1)_n_jobs | null |
sklearn.linear_model._base.LinearRegression(1)_normalize | false |
0.5368 ± 0.1849 Cross-validation details (10-fold Crossvalidation)
|
6.8603 ± 0.7267 Cross-validation details (10-fold Crossvalidation)
|
252 Cross-validation details (10-fold Crossvalidation) |
0.0783 ± 0.0322 Cross-validation details (10-fold Crossvalidation)
|
8.3521 ± 0.9478 Cross-validation details (10-fold Crossvalidation)
|
1.3894 ± 0.9665 Cross-validation details (10-fold Crossvalidation)
|
0.1664 ± 0.1329 Cross-validation details (10-fold Crossvalidation)
|