torch.nn.modules.container.Sequential.bdbb959781617ffd(1) | Automatically created pytorch flow. |
torch.nn.modules.container.Sequential.bdbb959781617ffd(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.modules.container.Sequential.32007e2352f18993(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
openml_pytorch.layers.functional.Functional.7247535674af711d(1)_args | [] |
openml_pytorch.layers.functional.Functional.7247535674af711d(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml_pytorch.layers.functional.Functional.7247535674af711d(1)_kwargs | {"shape": [-1, 1, 28, 28]} |
torch.nn.modules.batchnorm.BatchNorm2d.7d9eb49fbc0017a6(1)_affine | true |
torch.nn.modules.batchnorm.BatchNorm2d.7d9eb49fbc0017a6(1)_eps | 1e-05 |
torch.nn.modules.batchnorm.BatchNorm2d.7d9eb49fbc0017a6(1)_momentum | 0.1 |
torch.nn.modules.batchnorm.BatchNorm2d.7d9eb49fbc0017a6(1)_num_features | 1 |
torch.nn.modules.batchnorm.BatchNorm2d.7d9eb49fbc0017a6(1)_track_running_stats | true |
torch.nn.modules.container.Sequential.eaa8058b8b7b40b4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}] |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_in_channels | 1 |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_out_channels | 32 |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.161f52fe251f0a8c(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.5ff530c24890720b(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.5ff530c24890720b(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.b36c3acb16e920c4(1)_stride | 2 |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_in_channels | 32 |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_out_channels | 64 |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.6563b49debeb6a35(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.87c276d5d03e3b8e(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.87c276d5d03e3b8e(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.ea5a6d80b9534330(1)_stride | 2 |
torch.nn.modules.container.Sequential.bc1381da9442aa81(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}] |
openml_pytorch.layers.functional.Functional.469999d0180ae18f(1)_args | [] |
openml_pytorch.layers.functional.Functional.469999d0180ae18f(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml_pytorch.layers.functional.Functional.469999d0180ae18f(1)_kwargs | {"shape": [-1, 1024]} |
torch.nn.modules.linear.Linear.92b67f683b822c7(1)_in_features | 1024 |
torch.nn.modules.linear.Linear.92b67f683b822c7(1)_out_features | 256 |
torch.nn.modules.activation.LeakyReLU.4600fecc20b16ced(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.4600fecc20b16ced(1)_negative_slope | 0.01 |
torch.nn.modules.dropout.Dropout.4fc8ae60461f55(1)_inplace | false |
torch.nn.modules.dropout.Dropout.4fc8ae60461f55(1)_p | 0.5 |
torch.nn.modules.linear.Linear.4e3160bf6bcf8e3(1)_in_features | 256 |
torch.nn.modules.linear.Linear.4e3160bf6bcf8e3(1)_out_features | 10 |