Run
10437869

Run 10437869

Task 1799 (Supervised Classification) dermatology Uploaded 10-03-2020 by Gylau Dijini
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.22.2.post1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step1=sklearn.impute._base.SimpleImputer,step2=sk learn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(14)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(14)_copytrue
sklearn.impute._base.SimpleImputer(14)_fill_valuenull
sklearn.impute._base.SimpleImputer(14)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(14)_strategy"mean"
sklearn.impute._base.SimpleImputer(14)_verbose0
sklearn.svm._classes.SVC(2)_C1.0
sklearn.svm._classes.SVC(2)_break_tiesfalse
sklearn.svm._classes.SVC(2)_cache_size200
sklearn.svm._classes.SVC(2)_class_weightnull
sklearn.svm._classes.SVC(2)_coef00.0
sklearn.svm._classes.SVC(2)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(2)_degree3
sklearn.svm._classes.SVC(2)_gamma"scale"
sklearn.svm._classes.SVC(2)_kernel"rbf"
sklearn.svm._classes.SVC(2)_max_iter-1
sklearn.svm._classes.SVC(2)_probabilityfalse
sklearn.svm._classes.SVC(2)_random_state15819
sklearn.svm._classes.SVC(2)_shrinkingtrue
sklearn.svm._classes.SVC(2)_tol0.001
sklearn.svm._classes.SVC(2)_verbosefalse
sklearn.pipeline.Pipeline(step1=sklearn.impute._base.SimpleImputer,step2=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(step1=sklearn.impute._base.SimpleImputer,step2=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step1", "step_name": "step1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step2", "step_name": "step2"}}]
sklearn.pipeline.Pipeline(step1=sklearn.impute._base.SimpleImputer,step2=sklearn.svm._classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.746 ± 0.0101
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.5091 ± 0.0185
Cross-validation details (5 times 2-fold Crossvalidation)
0.5386 ± 0.02
Cross-validation details (5 times 2-fold Crossvalidation)
0.1237 ± 0.0042
Cross-validation details (5 times 2-fold Crossvalidation)
0.2664 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.629 ± 0.0125
Cross-validation details (5 times 2-fold Crossvalidation)
1830
Per class
Cross-validation details (5 times 2-fold Crossvalidation)
0.629 ± 0.0125
Cross-validation details (5 times 2-fold Crossvalidation)
2.4327 ± 0.0009
Cross-validation details (5 times 2-fold Crossvalidation)
0.4642 ± 0.0156
Cross-validation details (5 times 2-fold Crossvalidation)
0.3649 ± 0
Cross-validation details (5 times 2-fold Crossvalidation)
0.3517 ± 0.0059
Cross-validation details (5 times 2-fold Crossvalidation)
0.9638 ± 0.0163
Cross-validation details (5 times 2-fold Crossvalidation)
0.5585 ± 0.0387
Cross-validation details (5 times 2-fold Crossvalidation)