Run
10437829

Run 10437829

Task 2075 (Supervised Classification) abalone Uploaded 03-03-2020 by Fares Gaaloul
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.f eature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble. forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.impute.SimpleImputer(15)_copytrue
sklearn.impute.SimpleImputer(15)_fill_valuenull
sklearn.impute.SimpleImputer(15)_missing_valuesNaN
sklearn.impute.SimpleImputer(15)_strategy"constant"
sklearn.impute.SimpleImputer(15)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(61)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(61)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(61)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(61)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(61)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(61)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(61)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(61)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(61)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(61)_random_state31461
sklearn.ensemble.forest.RandomForestClassifier(61)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(61)_warm_startfalse
sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.feature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.feature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "fs", "step_name": "fs"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "rf", "step_name": "rf"}}]
sklearn.feature_selection.univariate_selection.SelectPercentile(4)_percentile80
sklearn.feature_selection.univariate_selection.SelectPercentile(4)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection.univariate_selection.f_classif"}

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.7241 ± 0.013
Per class
Cross-validation details (10-fold Crossvalidation)
0.1419 ± 0.0303
Cross-validation details (10-fold Crossvalidation)
0.2404 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
0.0561 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.0618 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2428 ± 0.0262
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.2428 ± 0.0262
Cross-validation details (10-fold Crossvalidation)
3.6031 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.9077 ± 0.0085
Cross-validation details (10-fold Crossvalidation)
0.1757 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1721 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.9794 ± 0.0085
Cross-validation details (10-fold Crossvalidation)