Run
10437805

Run 10437805

Task 2075 (Supervised Classification) abalone Uploaded 03-03-2020 by Fares Gaaloul
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(model=sklearn.ensemble.forest.RandomForestClassif ier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(model=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(model=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "model", "step_name": "model"}}]
sklearn.ensemble.forest.RandomForestClassifier(61)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(61)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(61)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(61)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(61)_max_features0.49342778081534433
sklearn.ensemble.forest.RandomForestClassifier(61)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_leaf2
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_split15
sklearn.ensemble.forest.RandomForestClassifier(61)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(61)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(61)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(61)_random_state24995
sklearn.ensemble.forest.RandomForestClassifier(61)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(61)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.7655 ± 0.0086
Per class
Cross-validation details (10-fold Crossvalidation)
0.1636 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
0.2576 ± 0.0084
Cross-validation details (10-fold Crossvalidation)
0.0556 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.0618 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2655 ± 0.021
Cross-validation details (10-fold Crossvalidation)
4177
Per class
Cross-validation details (10-fold Crossvalidation)
0.2655 ± 0.021
Cross-validation details (10-fold Crossvalidation)
3.6031 ± 0.0126
Cross-validation details (10-fold Crossvalidation)
0.8993 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.1757 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1683 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.9577 ± 0.0066
Cross-validation details (10-fold Crossvalidation)