Run
10437802

Run 10437802

Task 3484 (Supervised Classification) oil_spill Uploaded 03-03-2020 by Fares Gaaloul
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(featureagglomeration=sklearn.cluster.hierarchical .FeatureAgglomeration,decisiontreeclassifier=sklearn.tree.tree.DecisionTree Classifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(featureagglomeration=sklearn.cluster.hierarchical.FeatureAgglomeration,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(featureagglomeration=sklearn.cluster.hierarchical.FeatureAgglomeration,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "featureagglomeration", "step_name": "featureagglomeration"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_affinity"manhattan"
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_compute_full_tree"auto"
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_connectivitynull
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_linkage"average"
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_memorynull
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_n_clusters2
sklearn.cluster.hierarchical.FeatureAgglomeration(4)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.mean"}
sklearn.tree.tree.DecisionTreeClassifier(64)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(64)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(64)_max_depth10
sklearn.tree.tree.DecisionTreeClassifier(64)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(64)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(64)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(64)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(64)_min_samples_leaf13
sklearn.tree.tree.DecisionTreeClassifier(64)_min_samples_split16
sklearn.tree.tree.DecisionTreeClassifier(64)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(64)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(64)_random_state22408
sklearn.tree.tree.DecisionTreeClassifier(64)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7412 ± 0.1014
Per class
Cross-validation details (10-fold Crossvalidation)
0.9401 ± 0.015
Per class
Cross-validation details (10-fold Crossvalidation)
0.1977 ± 0.2033
Cross-validation details (10-fold Crossvalidation)
-0.9515 ± 0.3809
Cross-validation details (10-fold Crossvalidation)
0.0754 ± 0.0106
Cross-validation details (10-fold Crossvalidation)
0.0846 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.9477 ± 0.0146
Cross-validation details (10-fold Crossvalidation)
937
Per class
Cross-validation details (10-fold Crossvalidation)
0.9346 ± 0.0202
Per class
Cross-validation details (10-fold Crossvalidation)
0.9477 ± 0.0146
Cross-validation details (10-fold Crossvalidation)
0.2593 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
0.8921 ± 0.1359
Cross-validation details (10-fold Crossvalidation)
0.2046 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.2071 ± 0.0158
Cross-validation details (10-fold Crossvalidation)
1.0127 ± 0.0799
Cross-validation details (10-fold Crossvalidation)
0.577 ± 0.0842
Cross-validation details (10-fold Crossvalidation)