torch.nn.modules.container.Sequential.9171040a49232214(1) | Automatically created pytorch flow. |
torch.nn.modules.container.Sequential.9171040a49232214(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.modules.container.Sequential.39691218e4dd20c8(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
openml_pytorch.layers.functional.Functional.2725b746490b8d7c(1)_args | [] |
openml_pytorch.layers.functional.Functional.2725b746490b8d7c(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml_pytorch.layers.functional.Functional.2725b746490b8d7c(1)_kwargs | {"shape": [-1, 1, 28, 28]} |
torch.nn.modules.batchnorm.BatchNorm2d.f6e73a4139ac9d45(1)_affine | true |
torch.nn.modules.batchnorm.BatchNorm2d.f6e73a4139ac9d45(1)_eps | 1e-05 |
torch.nn.modules.batchnorm.BatchNorm2d.f6e73a4139ac9d45(1)_momentum | 0.1 |
torch.nn.modules.batchnorm.BatchNorm2d.f6e73a4139ac9d45(1)_num_features | 1 |
torch.nn.modules.batchnorm.BatchNorm2d.f6e73a4139ac9d45(1)_track_running_stats | true |
torch.nn.modules.container.Sequential.bfcc52c7c41c1ced(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}] |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_in_channels | 1 |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_out_channels | 32 |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.4f4a3c545a9fe590(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.8bfd32e9ea1ecb63(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.8bfd32e9ea1ecb63(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.15496d921cc298bf(1)_stride | 2 |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_in_channels | 32 |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_out_channels | 64 |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.9ebcac0489866d37(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.f7263e0619e32243(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.f7263e0619e32243(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.3b77a279d8625879(1)_stride | 2 |
torch.nn.modules.container.Sequential.2fe128cfd56755d9(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}] |
openml_pytorch.layers.functional.Functional.1bd16f4cd9c2f669(1)_args | [] |
openml_pytorch.layers.functional.Functional.1bd16f4cd9c2f669(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml_pytorch.layers.functional.Functional.1bd16f4cd9c2f669(1)_kwargs | {"shape": [-1, 1024]} |
torch.nn.modules.linear.Linear.bdf776e9990c03b5(1)_in_features | 1024 |
torch.nn.modules.linear.Linear.bdf776e9990c03b5(1)_out_features | 256 |
torch.nn.modules.activation.LeakyReLU.90008d7ea83bee86(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.90008d7ea83bee86(1)_negative_slope | 0.01 |
torch.nn.modules.dropout.Dropout.13f654bbd4c25477(1)_inplace | false |
torch.nn.modules.dropout.Dropout.13f654bbd4c25477(1)_p | 0.5 |
torch.nn.modules.linear.Linear.2c1ec675fc9090c7(1)_in_features | 256 |
torch.nn.modules.linear.Linear.2c1ec675fc9090c7(1)_out_features | 10 |