Run
10437445

Run 10437445

Task 9946 (Supervised Classification) wdbc Uploaded 06-02-2020 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(es timator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGrad ientBoostingClassifier)(3)Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources. The candidates are sampled at random from the parameter space and the number of sampled candidates is determined by ``n_candidates``.
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_aggressive_eliminationfalse
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_cv5
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_error_scoreNaN
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_force_exhaust_resourcestrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_max_resources100
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_min_resources"auto"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_n_candidates100
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_n_jobsnull
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_param_distributions{"l2_regularization": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.reciprocal_gen", "a": -Infinity, "b": Infinity, "args": [0.0001, 1], "kwds": {}}}, "learning_rate": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.reciprocal_gen", "a": -Infinity, "b": Infinity, "args": [0.0001, 1], "kwds": {}}}, "max_depth": [5, 6, 7, 8, 9, 1000], "max_leaf_nodes": [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], "min_samples_leaf": [2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_random_state0
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_ratio3
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_refit{"oml-python:serialized_object": "function", "value": "sklearn.model_selection._search_successive_halving._refit_callable"}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_resource"max_iter"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_return_train_scoretrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_scoringnull
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_random_state4240
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(5)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures

0.9933 ± 0.0114
Per class
Cross-validation details (10-fold Crossvalidation)
0.97 ± 0.0148
Per class
Cross-validation details (10-fold Crossvalidation)
0.9357 ± 0.0318
Cross-validation details (10-fold Crossvalidation)
0.9317 ± 0.0346
Cross-validation details (10-fold Crossvalidation)
0.0316 ± 0.0159
Cross-validation details (10-fold Crossvalidation)
0.4676 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.9701 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
569
Per class
Cross-validation details (10-fold Crossvalidation)
0.9702 ± 0.0133
Per class
Cross-validation details (10-fold Crossvalidation)
0.9701 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.9526 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.0675 ± 0.0338
Cross-validation details (10-fold Crossvalidation)
0.4835 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.1569 ± 0.046
Cross-validation details (10-fold Crossvalidation)
0.3246 ± 0.0948
Cross-validation details (10-fold Crossvalidation)
0.9647 ± 0.0215
Cross-validation details (10-fold Crossvalidation)