Run
10435615

Run 10435615

Task 14965 (Supervised Classification) bank-marketing Uploaded 05-01-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standa rdScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing ._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(2)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C696.7376145562746
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.5281207174959481
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree1
sklearn.svm.classes.SVC(31)_gamma0.0001473666628496018
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(11)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(11)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(11)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(11)_sparsetrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [true, false, false, false, false, true, false, false, false, true, false, true, true, true, true, false]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [false, true, true, true, true, false, true, true, true, false, true, false, false, false, false, true]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8558 ± 0.0083
Per class
Cross-validation details (10-fold Crossvalidation)
0.8655 ± 0.0037
Per class
Cross-validation details (10-fold Crossvalidation)
0.2486 ± 0.0224
Cross-validation details (10-fold Crossvalidation)
0.0932 ± 0.0102
Cross-validation details (10-fold Crossvalidation)
0.1865 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.2066 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8929 ± 0.0022
Cross-validation details (10-fold Crossvalidation)
45211
Per class
Cross-validation details (10-fold Crossvalidation)
0.8716 ± 0.0049
Per class
Cross-validation details (10-fold Crossvalidation)
0.8929 ± 0.0022
Cross-validation details (10-fold Crossvalidation)
0.5206 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9026 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.3214 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.3056 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.9507 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.5858 ± 0.0086
Cross-validation details (10-fold Crossvalidation)