Run
10434465

Run 10434465

Task 11 (Supervised Classification) balance-scale Uploaded 17-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(3)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(4)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(4)_copytrue
sklearn.impute._base.SimpleImputer(4)_fill_valuenull
sklearn.impute._base.SimpleImputer(4)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(4)_strategy"median"
sklearn.impute._base.SimpleImputer(4)_verbose0
sklearn.svm.classes.SVC(37)_C1.0
sklearn.svm.classes.SVC(37)_cache_size200
sklearn.svm.classes.SVC(37)_class_weightnull
sklearn.svm.classes.SVC(37)_coef00.0
sklearn.svm.classes.SVC(37)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(37)_degree3
sklearn.svm.classes.SVC(37)_gamma"scale"
sklearn.svm.classes.SVC(37)_kernel"rbf"
sklearn.svm.classes.SVC(37)_max_iter-1
sklearn.svm.classes.SVC(37)_probabilitytrue
sklearn.svm.classes.SVC(37)_random_state1101
sklearn.svm.classes.SVC(37)_shrinkingtrue
sklearn.svm.classes.SVC(37)_tol0.001
sklearn.svm.classes.SVC(37)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(3)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(3)_verbosefalse
sklearn.preprocessing.data.StandardScaler(37)_copytrue
sklearn.preprocessing.data.StandardScaler(37)_with_meantrue
sklearn.preprocessing.data.StandardScaler(37)_with_stdtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.711 ± 0.0436
Per class
Cross-validation details (10-fold Crossvalidation)
0.4684 ± 0.0225
Per class
Cross-validation details (10-fold Crossvalidation)
0.2559 ± 0.0388
Cross-validation details (10-fold Crossvalidation)
0.1736 ± 0.0515
Cross-validation details (10-fold Crossvalidation)
0.3495 ± 0.0177
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.4672 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.5419 ± 0.1297
Per class
Cross-validation details (10-fold Crossvalidation)
0.4672 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.9202 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.5467 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
1.2552 ± 0.0429
Cross-validation details (10-fold Crossvalidation)
0.3944 ± 0.0524
Cross-validation details (10-fold Crossvalidation)