Run
10434058

Run 10434058

Task 9952 (Supervised Classification) phoneme Uploaded 17-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C145.062088911885
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.6821770327669925
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree3
sklearn.svm.classes.SVC(31)_gamma3.1616393039213624
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6485 ± 0.0288
Per class
Cross-validation details (10-fold Crossvalidation)
0.6555 ± 0.0142
Per class
Cross-validation details (10-fold Crossvalidation)
0.1355 ± 0.0339
Cross-validation details (10-fold Crossvalidation)
0.0725 ± 0.0233
Cross-validation details (10-fold Crossvalidation)
0.3786 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.4147 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.718 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
5404
Per class
Cross-validation details (10-fold Crossvalidation)
0.6841 ± 0.0258
Per class
Cross-validation details (10-fold Crossvalidation)
0.718 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.8732 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.9129 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.4554 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.4402 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
0.5533 ± 0.0135
Cross-validation details (10-fold Crossvalidation)