Run
10433985

Run 10433985

Task 9952 (Supervised Classification) phoneme Uploaded 17-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C3.081620245614723
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.053322514098660845
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree5
sklearn.svm.classes.SVC(31)_gamma0.31447231452702795
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6871 ± 0.0324
Per class
Cross-validation details (10-fold Crossvalidation)
0.6419 ± 0.0203
Per class
Cross-validation details (10-fold Crossvalidation)
0.1057 ± 0.05
Cross-validation details (10-fold Crossvalidation)
0.0795 ± 0.0267
Cross-validation details (10-fold Crossvalidation)
0.3774 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.4147 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.7143 ± 0.0152
Cross-validation details (10-fold Crossvalidation)
5404
Per class
Cross-validation details (10-fold Crossvalidation)
0.6768 ± 0.0425
Per class
Cross-validation details (10-fold Crossvalidation)
0.7143 ± 0.0152
Cross-validation details (10-fold Crossvalidation)
0.8732 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.9101 ± 0.0193
Cross-validation details (10-fold Crossvalidation)
0.4554 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.4371 ± 0.0086
Cross-validation details (10-fold Crossvalidation)
0.9599 ± 0.0189
Cross-validation details (10-fold Crossvalidation)
0.5407 ± 0.0194
Cross-validation details (10-fold Crossvalidation)