Run
10432912

Run 10432912

Task 146820 (Supervised Classification) wilt Uploaded 15-12-2019 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemb le._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier )(3)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_error_scoreNaN
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_iid"deprecated"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_n_iter100
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_param_distributions{"l2_regularization": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.reciprocal_gen", "a": -Infinity, "b": Infinity, "args": [0.0001, 1], "kwds": {}}}, "learning_rate": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.reciprocal_gen", "a": -Infinity, "b": Infinity, "args": [0.0001, 1], "kwds": {}}}, "max_depth": [5, 6, 7, 8, 9, 1000], "max_leaf_nodes": [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], "min_samples_leaf": [2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_random_state0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(3)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_random_state37199
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures

0.9826 ± 0.0096
Per class
Cross-validation details (10-fold Crossvalidation)
0.9835 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
0.8355 ± 0.069
Cross-validation details (10-fold Crossvalidation)
0.7317 ± 0.0921
Cross-validation details (10-fold Crossvalidation)
0.0209 ± 0.0068
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9839 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9834 ± 0.0068
Per class
Cross-validation details (10-fold Crossvalidation)
0.9839 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.2045 ± 0.0669
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.1139 ± 0.0219
Cross-validation details (10-fold Crossvalidation)
0.504 ± 0.0982
Cross-validation details (10-fold Crossvalidation)
0.9012 ± 0.0476
Cross-validation details (10-fold Crossvalidation)