Run
10432737

Run 10432737

Task 6 (Supervised Classification) letter Uploaded 13-12-2019 by Evan Peterson
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.linear_model._stochastic_gradient.SGDClassifier(1)Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value b...
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_alpha0.0001
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_epsilon0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_eta00.0
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_l1_ratio0.15
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_learning_rate"optimal"
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_max_iter1000
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_n_iter_no_change5
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_n_jobsnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_power_t0.5
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_random_state36888
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_tol0.001
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7606 ± 0.0251
Per class
Cross-validation details (10-fold Crossvalidation)
0.551 ± 0.0414
Per class
Cross-validation details (10-fold Crossvalidation)
0.5212 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
0.5336 ± 0.0488
Cross-validation details (10-fold Crossvalidation)
0.0354 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.074 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5396 ± 0.0483
Cross-validation details (10-fold Crossvalidation)
20000
Per class
Cross-validation details (10-fold Crossvalidation)
0.5968 ± 0.0383
Per class
Cross-validation details (10-fold Crossvalidation)
0.5396 ± 0.0483
Cross-validation details (10-fold Crossvalidation)
4.6998 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4789 ± 0.0503
Cross-validation details (10-fold Crossvalidation)
0.1923 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1882 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.9787 ± 0.0509
Cross-validation details (10-fold Crossvalidation)
0.5383 ± 0.048
Cross-validation details (10-fold Crossvalidation)