Run
10428247

Run 10428247

Task 146800 (Supervised Classification) MiceProtein Uploaded 08-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C358.0737967858615
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.7802829217620928
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree4
sklearn.svm.classes.SVC(31)_gamma0.0009502473910524347
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9999 ± 0.0002
Per class
Cross-validation details (10-fold Crossvalidation)
0.9991 ± 0.0029
Per class
Cross-validation details (10-fold Crossvalidation)
0.9989 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.9796 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
0.0098 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.2185 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9991 ± 0.0029
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.9991 ± 0.0027
Per class
Cross-validation details (10-fold Crossvalidation)
0.9991 ± 0.0029
Cross-validation details (10-fold Crossvalidation)
2.993 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.045 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.3305 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.0276 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.0834 ± 0.0335
Cross-validation details (10-fold Crossvalidation)
0.9992 ± 0.0026
Cross-validation details (10-fold Crossvalidation)