Run
10426133

Run 10426133

Task 146817 (Supervised Classification) steel-plates-fault Uploaded 05-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C1.799125831143992
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.7926565732345652
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree3
sklearn.svm.classes.SVC(31)_gamma0.01858955180141993
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9203 ± 0.0158
Per class
Cross-validation details (10-fold Crossvalidation)
0.7546 ± 0.0322
Per class
Cross-validation details (10-fold Crossvalidation)
0.6814 ± 0.0424
Cross-validation details (10-fold Crossvalidation)
0.6484 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.1076 ± 0.0043
Cross-validation details (10-fold Crossvalidation)
0.2223 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7548 ± 0.0331
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.7578 ± 0.0324
Per class
Cross-validation details (10-fold Crossvalidation)
0.7548 ± 0.0331
Cross-validation details (10-fold Crossvalidation)
2.4107 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
0.4842 ± 0.0195
Cross-validation details (10-fold Crossvalidation)
0.3334 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.2222 ± 0.0089
Cross-validation details (10-fold Crossvalidation)
0.6664 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
0.7552 ± 0.0305
Cross-validation details (10-fold Crossvalidation)