Run
10424802

Run 10424802

Task 3902 (Supervised Classification) pc4 Uploaded 05-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C16083.490291566017
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.362263190260782
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree4
sklearn.svm.classes.SVC(31)_gamma0.25112463456219164
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4492 ± 0.0834
Per class
Cross-validation details (10-fold Crossvalidation)
0.8263 ± 0.0141
Per class
Cross-validation details (10-fold Crossvalidation)
0.0343 ± 0.0613
Cross-validation details (10-fold Crossvalidation)
0.0149 ± 0.0326
Cross-validation details (10-fold Crossvalidation)
0.2112 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.2148 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8786 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
1458
Per class
Cross-validation details (10-fold Crossvalidation)
0.8424 ± 0.0575
Per class
Cross-validation details (10-fold Crossvalidation)
0.8786 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
0.5353 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.9836 ± 0.0243
Cross-validation details (10-fold Crossvalidation)
0.3274 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.3268 ± 0.0092
Cross-validation details (10-fold Crossvalidation)
0.9982 ± 0.0253
Cross-validation details (10-fold Crossvalidation)
0.5101 ± 0.0188
Cross-validation details (10-fold Crossvalidation)