Run
10423287

Run 10423287

Task 43 (Supervised Classification) spambase Uploaded 04-12-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C1.0167588209539864
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.6354734369237474
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree3
sklearn.svm.classes.SVC(31)_gamma0.0003345572257968965
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9503 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.905 ± 0.0152
Per class
Cross-validation details (10-fold Crossvalidation)
0.8 ± 0.0324
Cross-validation details (10-fold Crossvalidation)
0.6884 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.1611 ± 0.0103
Cross-validation details (10-fold Crossvalidation)
0.4776 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
4601
Per class
Cross-validation details (10-fold Crossvalidation)
0.9058 ± 0.0144
Per class
Cross-validation details (10-fold Crossvalidation)
0.9057 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.9674 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9057 ± 0.0148
Per class
Cross-validation details (10-fold Crossvalidation)
0.3374 ± 0.0216
Cross-validation details (10-fold Crossvalidation)
0.4886 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2778 ± 0.0179
Cross-validation details (10-fold Crossvalidation)
0.5685 ± 0.0368
Cross-validation details (10-fold Crossvalidation)