Run
10418880

Run 10418880

Task 167119 (Supervised Classification) jungle_chess_2pcs_raw_endgame_complete Uploaded 29-11-2019 by Thomas Fan
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(es timator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGrad ientBoostingClassifier)(4)Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources. The candidates are sampled at random from the parameter space and the number of sampled candidates is determined by ``n_candidates``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_random_state53843
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_warm_startfalse
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_aggressive_eliminationfalse
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_cv5
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_error_scoreNaN
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_force_exhaust_resourcestrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_max_resources100
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_min_resources"auto"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_n_candidates100
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_n_jobs3
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_param_distributions{"l2_regularization": [0, 0.01, 0.1], "learning_rate": [0.01, 0.1, 1], "max_depth": [5, 6, 7, 8, 9, 1000], "max_leaf_nodes": [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], "min_samples_leaf": [2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_random_state0
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_ratio3
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_refit{"oml-python:serialized_object": "function", "value": "sklearn.model_selection._search_successive_halving._refit_callable"}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_resource"max_iter"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_return_train_scoretrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_scoringnull
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_verbose1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.5544 ± 0.1017
Per class
Cross-validation details (10-fold Crossvalidation)
0.481 ± 0.2474
Per class
Cross-validation details (10-fold Crossvalidation)
0.1075 ± 0.1884
Cross-validation details (10-fold Crossvalidation)
0.1395 ± 0.1714
Cross-validation details (10-fold Crossvalidation)
0.3392 ± 0.07
Cross-validation details (10-fold Crossvalidation)
0.3832 ± 0
Cross-validation details (10-fold Crossvalidation)
44819
Per class
Cross-validation details (10-fold Crossvalidation)
0.4928 ± 0.0354
Per class
Cross-validation details (10-fold Crossvalidation)
0.4913 ± 0.105
Cross-validation details (10-fold Crossvalidation)
1.3491 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4913 ± 0.105
Per class
Cross-validation details (10-fold Crossvalidation)
0.8851 ± 0.1828
Cross-validation details (10-fold Crossvalidation)
0.4377 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5824 ± 0.0638
Cross-validation details (10-fold Crossvalidation)
1.3305 ± 0.1458
Cross-validation details (10-fold Crossvalidation)