Run
10418484

Run 10418484

Task 9978 (Supervised Classification) ozone-level-8hr Uploaded 22-11-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotE ncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.Var ianceThreshold,sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDCl assifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(10)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(10)_copytrue
sklearn.impute._base.SimpleImputer(10)_fill_value-1
sklearn.impute._base.SimpleImputer(10)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(10)_strategy"constant"
sklearn.impute._base.SimpleImputer(10)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_verbosefalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(8)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(8)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(8)_verbosefalse
sklearn.preprocessing.imputation.Imputer(50)_axis0
sklearn.preprocessing.imputation.Imputer(50)_copytrue
sklearn.preprocessing.imputation.Imputer(50)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(50)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(50)_verbose0
sklearn.preprocessing.data.StandardScaler(36)_copytrue
sklearn.preprocessing.data.StandardScaler(36)_with_meantrue
sklearn.preprocessing.data.StandardScaler(36)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(17)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(17)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(17)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(17)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(28)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "sgdclassifier", "step_name": "sgdclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(1)_verbosefalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_alpha0.0001
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_averagefalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_class_weightnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_early_stoppingfalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_eta00.0
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_l1_ratio0.15
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_learning_rate"optimal"
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_loss"hinge"
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_max_iter1000
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_n_jobsnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_penalty"l2"
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_power_t0.5
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_random_state0
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_tol0.001
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_verbose0
sklearn.linear_model.stochastic_gradient.SGDClassifier(10)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.69 ± 0.0785
Per class
Cross-validation details (10-fold Crossvalidation)
0.9231 ± 0.014
Per class
Cross-validation details (10-fold Crossvalidation)
0.364 ± 0.1002
Cross-validation details (10-fold Crossvalidation)
0.0589 ± 0.2529
Cross-validation details (10-fold Crossvalidation)
0.0785 ± 0.0212
Cross-validation details (10-fold Crossvalidation)
0.1186 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
2534
Per class
Cross-validation details (10-fold Crossvalidation)
0.9249 ± 0.0132
Per class
Cross-validation details (10-fold Crossvalidation)
0.9215 ± 0.0212
Cross-validation details (10-fold Crossvalidation)
0.3398 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.9215 ± 0.0212
Per class
Cross-validation details (10-fold Crossvalidation)
0.6621 ± 0.1781
Cross-validation details (10-fold Crossvalidation)
0.2432 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2802 ± 0.0368
Cross-validation details (10-fold Crossvalidation)
1.1522 ± 0.1507
Cross-validation details (10-fold Crossvalidation)