Run
10417740

Run 10417740

Task 3022 (Supervised Classification) vowel Uploaded 22-11-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotE ncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.Var ianceThreshold,kneighborsclassifier=sklearn.neighbors.classification.KNeigh borsClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 1]}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(2)_verbosefalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(7)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(7)_verbosefalse
sklearn.preprocessing.imputation.Imputer(49)_axis0
sklearn.preprocessing.imputation.Imputer(49)_copytrue
sklearn.preprocessing.imputation.Imputer(49)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(49)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(49)_verbose0
sklearn.preprocessing.data.StandardScaler(35)_copytrue
sklearn.preprocessing.data.StandardScaler(35)_with_meantrue
sklearn.preprocessing.data.StandardScaler(35)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_verbosefalse
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_value-1
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"constant"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(16)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(16)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(16)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(27)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "kneighborsclassifier", "step_name": "kneighborsclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassifier)(1)_verbosefalse
sklearn.neighbors.classification.KNeighborsClassifier(39)_algorithm"auto"
sklearn.neighbors.classification.KNeighborsClassifier(39)_leaf_size30
sklearn.neighbors.classification.KNeighborsClassifier(39)_metric"minkowski"
sklearn.neighbors.classification.KNeighborsClassifier(39)_metric_paramsnull
sklearn.neighbors.classification.KNeighborsClassifier(39)_n_jobsnull
sklearn.neighbors.classification.KNeighborsClassifier(39)_n_neighbors5
sklearn.neighbors.classification.KNeighborsClassifier(39)_p2
sklearn.neighbors.classification.KNeighborsClassifier(39)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9961 ± 0.0041
Per class
Cross-validation details (10-fold Crossvalidation)
0.9194 ± 0.0457
Per class
Cross-validation details (10-fold Crossvalidation)
0.9111 ± 0.048
Cross-validation details (10-fold Crossvalidation)
0.9028 ± 0.015
Cross-validation details (10-fold Crossvalidation)
0.0316 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.1653
Cross-validation details (10-fold Crossvalidation)
990
Per class
Cross-validation details (10-fold Crossvalidation)
0.9222 ± 0.0427
Per class
Cross-validation details (10-fold Crossvalidation)
0.9192 ± 0.0436
Cross-validation details (10-fold Crossvalidation)
3.4594
Cross-validation details (10-fold Crossvalidation)
0.9192 ± 0.0436
Per class
Cross-validation details (10-fold Crossvalidation)
0.1909 ± 0.0211
Cross-validation details (10-fold Crossvalidation)
0.2875
Cross-validation details (10-fold Crossvalidation)
0.1115 ± 0.0127
Cross-validation details (10-fold Crossvalidation)
0.3877 ± 0.0441
Cross-validation details (10-fold Crossvalidation)