Run
10417438

Run 10417438

Task 31 (Supervised Classification) credit-g Uploaded 14-11-2019 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.22.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemb le._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier )(1)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_random_state14703
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_warm_startfalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_error_scoreNaN
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_iid"deprecated"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_n_iter10
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_n_jobsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_param_distributions{"max_depth": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "min_samples_leaf": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_random_state62512
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.7702 ± 0.0454
Per class
Cross-validation details (10-fold Crossvalidation)
0.7552 ± 0.0401
Per class
Cross-validation details (10-fold Crossvalidation)
0.4033 ± 0.0975
Cross-validation details (10-fold Crossvalidation)
0.3135 ± 0.0692
Cross-validation details (10-fold Crossvalidation)
0.2776 ± 0.0236
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.753 ± 0.0424
Per class
Cross-validation details (10-fold Crossvalidation)
0.763 ± 0.0395
Cross-validation details (10-fold Crossvalidation)
0.8813
Cross-validation details (10-fold Crossvalidation)
0.763 ± 0.0395
Per class
Cross-validation details (10-fold Crossvalidation)
0.6606 ± 0.0561
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4251 ± 0.0274
Cross-validation details (10-fold Crossvalidation)
0.9276 ± 0.0597
Cross-validation details (10-fold Crossvalidation)