Run
10417415

Run 10417415

Task 2295 (Supervised Regression) cholesterol Uploaded 14-11-2019 by Christian Geißler
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"mean"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_verbosefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_alpha0.0030954484667495923
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_averagefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_early_stoppingtrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_eta00.028780533065524756
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_l1_ratio0.3
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_learning_rate"invscaling"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_loss"squared_loss"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_max_iter8203.164385439833
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_penalty"l2"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_power_t0.7935072241530071
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_random_state10331
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_tol0.0032842026323837243
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_verbose0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

775567925545.89 ± 796427518705.18
Cross-validation details (10-fold Crossvalidation)
39.3139 ± 6.092
Cross-validation details (10-fold Crossvalidation)
303
Cross-validation details (10-fold Crossvalidation)
19727596391.289 ± 21137506226.742
Cross-validation details (10-fold Crossvalidation)
51.6914 ± 10.5853
Cross-validation details (10-fold Crossvalidation)
1101986678356 ± 808219941453.87
Cross-validation details (10-fold Crossvalidation)
21318566345.049 ± 17599382843.143
Cross-validation details (10-fold Crossvalidation)