Run
10417366

Run 10417366

Task 2295 (Supervised Regression) cholesterol Uploaded 14-11-2019 by Christian Geißler
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"mean"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_verbosefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_alpha0.00016386360677607913
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_averagefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_early_stoppingtrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_eta00.001
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_l1_ratio0.29604260356636436
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_learning_rate"invscaling"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_loss"squared_loss"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_max_iter10.0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_penalty"l2"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_power_t0.2
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_random_state56662
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_tol1e-05
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_verbose0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

3761165414333.3 ± 815816207175.62
Cross-validation details (10-fold Crossvalidation)
39.3139 ± 6.092
Cross-validation details (10-fold Crossvalidation)
303
Cross-validation details (10-fold Crossvalidation)
95670218959.377 ± 22003525936.232
Cross-validation details (10-fold Crossvalidation)
51.6914 ± 10.5853
Cross-validation details (10-fold Crossvalidation)
3925183694757.4 ± 819260018726.24
Cross-validation details (10-fold Crossvalidation)
75934937015.775 ± 20342322910.204
Cross-validation details (10-fold Crossvalidation)