Run
10417365

Run 10417365

Task 2295 (Supervised Regression) cholesterol Uploaded 14-11-2019 by Christian Geißler
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"mean"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.linear_model.stochastic_gradient.SGDRegressor)(1)_verbosefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_alpha1e-06
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_averagefalse
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_early_stoppingtrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_eta00.0010059697965448917
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_l1_ratio0.0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_learning_rate"invscaling"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_loss"squared_loss"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_max_iter100000.0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_penalty"l2"
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_power_t0.8
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_random_state39544
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_tol1.0154804643526372e-05
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_verbose0
sklearn.linear_model.stochastic_gradient.SGDRegressor(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

6385485296.7007 ± 4851391483.14
Cross-validation details (10-fold Crossvalidation)
39.3139 ± 6.092
Cross-validation details (10-fold Crossvalidation)
303
Cross-validation details (10-fold Crossvalidation)
162423267.578 ± 129533115.4762
Cross-validation details (10-fold Crossvalidation)
51.6914 ± 10.5853
Cross-validation details (10-fold Crossvalidation)
10238332804.053 ± 6414292078.3773
Cross-validation details (10-fold Crossvalidation)
198066438.9442 ± 134698777.9374
Cross-validation details (10-fold Crossvalidation)