Run
10417338

Run 10417338

Task 31 (Supervised Classification) credit-g Uploaded 14-11-2019 by Nicolas Hug
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.22.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoos tingClassifier(3)Histogram-based Gradient Boosting Classification Tree. This estimator is much faster than :class:`GradientBoostingClassifier` for big datasets (n_samples >= 10 000). This estimator has native support for missing values (NaNs). During training, the tree grower learns at each split point whether samples with missing values should go to the left or right child, based on the potential gain. When predicting, samples with missing values are assigned to the left or right child consequently. If no missing values were encountered for a given feature during training, then samples with missing values are mapped to whichever child has the most samples. This implementation is inspired by `LightGBM `_. .. note:: This estimator is still **experimental** for now: the predictions and the API might change without any deprecation cycle. To use it, you need to explicitly import ``enable_hist_gradient_boosting``:: >>> # explicit...
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_random_state52891
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(3)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7653 ± 0.0389
Per class
Cross-validation details (10-fold Crossvalidation)
0.7475 ± 0.0303
Per class
Cross-validation details (10-fold Crossvalidation)
0.3838 ± 0.0802
Cross-validation details (10-fold Crossvalidation)
0.3032 ± 0.0482
Cross-validation details (10-fold Crossvalidation)
0.2814 ± 0.0173
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.745 ± 0.031
Per class
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
0.8813
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0255
Per class
Cross-validation details (10-fold Crossvalidation)
0.6698 ± 0.0412
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4223 ± 0.0217
Cross-validation details (10-fold Crossvalidation)
0.9216 ± 0.0475
Cross-validation details (10-fold Crossvalidation)