Issue | #Downvotes for this reason | By |
---|
sklearn.linear_model.logistic.LogisticRegression(32) | Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only su... |
sklearn.linear_model.logistic.LogisticRegression(32)_C | 1.0 |
sklearn.linear_model.logistic.LogisticRegression(32)_class_weight | null |
sklearn.linear_model.logistic.LogisticRegression(32)_dual | false |
sklearn.linear_model.logistic.LogisticRegression(32)_fit_intercept | true |
sklearn.linear_model.logistic.LogisticRegression(32)_intercept_scaling | 1 |
sklearn.linear_model.logistic.LogisticRegression(32)_l1_ratio | null |
sklearn.linear_model.logistic.LogisticRegression(32)_max_iter | 100 |
sklearn.linear_model.logistic.LogisticRegression(32)_multi_class | "warn" |
` for more details">sklearn.linear_model.logistic.LogisticRegression(32)_n_jobs | null |
sklearn.linear_model.logistic.LogisticRegression(32)_penalty | "l2" |
sklearn.linear_model.logistic.LogisticRegression(32)_random_state | 25570 |
sklearn.linear_model.logistic.LogisticRegression(32)_solver | "warn" |
sklearn.linear_model.logistic.LogisticRegression(32)_tol | 0.0001 |
sklearn.linear_model.logistic.LogisticRegression(32)_verbose | 0 |
sklearn.linear_model.logistic.LogisticRegression(32)_warm_start | false |
0.6753 ± 0.0076 Per class Cross-validation details (10-fold Crossvalidation)
|
0.6321 ± 0.006 Per class Cross-validation details (10-fold Crossvalidation)
|
0.257 ± 0.0117 Cross-validation details (10-fold Crossvalidation)
|
0.1085 ± 0.0032 Cross-validation details (10-fold Crossvalidation)
|
0.4493 ± 0.0014 Cross-validation details (10-fold Crossvalidation)
|
0.4948 ± 0 Cross-validation details (10-fold Crossvalidation)
|
14980 Per class Cross-validation details (10-fold Crossvalidation) |
0.639 ± 0.0064 Per class Cross-validation details (10-fold Crossvalidation)
|
0.6406 ± 0.0057 Cross-validation details (10-fold Crossvalidation)
|
0.9924 ± 0.0001 Cross-validation details (10-fold Crossvalidation)
|
0.6406 ± 0.0057 Per class Cross-validation details (10-fold Crossvalidation)
|
0.908 ± 0.0027 Cross-validation details (10-fold Crossvalidation)
|
0.4974 ± 0 Cross-validation details (10-fold Crossvalidation)
|
0.4739 ± 0.0017 Cross-validation details (10-fold Crossvalidation)
|
0.9528 ± 0.0034 Cross-validation details (10-fold Crossvalidation)
|