Run
10417129

Run 10417129

Task 190155 (Supervised Classification) GTSRB-HueHist Uploaded 15-10-2019 by Andreas Mueller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.22.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn .impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.Stand ardScaler)),decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier )(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(31)_copytrue
sklearn.preprocessing.data.StandardScaler(31)_with_meantrue
sklearn.preprocessing.data.StandardScaler(31)_with_stdtrue
sklearn.tree.tree.DecisionTreeClassifier(51)_ccp_alpha0.0
sklearn.tree.tree.DecisionTreeClassifier(51)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(51)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(51)_max_depth1
sklearn.tree.tree.DecisionTreeClassifier(51)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(51)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(51)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(51)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(51)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(51)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(51)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(51)_presort"deprecated"
sklearn.tree.tree.DecisionTreeClassifier(51)_random_state3135
sklearn.tree.tree.DecisionTreeClassifier(51)_splitter"best"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)),decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)),decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)),decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255]}}]
sklearn.compose._column_transformer.ColumnTransformer(cont=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler))(1)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(2)_verbosefalse
sklearn.impute._base.SimpleImputer(5)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(5)_copytrue
sklearn.impute._base.SimpleImputer(5)_fill_valuenull
sklearn.impute._base.SimpleImputer(5)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(5)_strategy"median"
sklearn.impute._base.SimpleImputer(5)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5567
Per class
Cross-validation details (33% Holdout set)
0.0331
Cross-validation details (33% Holdout set)
0.0493
Cross-validation details (33% Holdout set)
0.0442
Cross-validation details (33% Holdout set)
0.0448
Cross-validation details (33% Holdout set)
17106
Per class
Cross-validation details (33% Holdout set)
0.0859
Cross-validation details (33% Holdout set)
5.0179
Cross-validation details (33% Holdout set)
0.0859
Per class
Cross-validation details (33% Holdout set)
0.9864
Cross-validation details (33% Holdout set)
0.1497
Cross-validation details (33% Holdout set)
0.1486
Cross-validation details (33% Holdout set)
0.993
Cross-validation details (33% Holdout set)