Run
10416917

Run 10416917

Task 3547 (Supervised Classification) cars Uploaded 12-10-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotE ncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.Var ianceThreshold,svc=sklearn.svm.classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(3)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(3)_copytrue
sklearn.impute._base.SimpleImputer(3)_fill_value-1
sklearn.impute._base.SimpleImputer(3)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(3)_strategy"constant"
sklearn.impute._base.SimpleImputer(3)_verbose0
sklearn.preprocessing.data.StandardScaler(30)_copytrue
sklearn.preprocessing.data.StandardScaler(30)_with_meantrue
sklearn.preprocessing.data.StandardScaler(30)_with_stdtrue
sklearn.svm.classes.SVC(32)_C1.0
sklearn.svm.classes.SVC(32)_cache_size200
sklearn.svm.classes.SVC(32)_class_weightnull
sklearn.svm.classes.SVC(32)_coef00.0
sklearn.svm.classes.SVC(32)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(32)_degree3
sklearn.svm.classes.SVC(32)_gamma0.03125
sklearn.svm.classes.SVC(32)_kernel"rbf"
sklearn.svm.classes.SVC(32)_max_iter-1
sklearn.svm.classes.SVC(32)_probabilityfalse
sklearn.svm.classes.SVC(32)_random_state63655
sklearn.svm.classes.SVC(32)_shrinkingtrue
sklearn.svm.classes.SVC(32)_tol0.001
sklearn.svm.classes.SVC(32)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(12)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(12)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(12)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_sparsetrue
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 2, 3, 4, 5, 6]}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_verbosefalse
sklearn.preprocessing.imputation.Imputer(48)_axis0
sklearn.preprocessing.imputation.Imputer(48)_copytrue
sklearn.preprocessing.imputation.Imputer(48)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(48)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(48)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(26)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7374 ± 0.0326
Per class
Cross-validation details (10-fold Crossvalidation)
0.7239 ± 0.0454
Per class
Cross-validation details (10-fold Crossvalidation)
0.498 ± 0.0822
Cross-validation details (10-fold Crossvalidation)
0.5193 ± 0.0808
Cross-validation details (10-fold Crossvalidation)
0.1593 ± 0.0286
Cross-validation details (10-fold Crossvalidation)
0.3596 ± 0.0028
Cross-validation details (10-fold Crossvalidation)
406
Per class
Cross-validation details (10-fold Crossvalidation)
0.7597 ± 0.0498
Per class
Cross-validation details (10-fold Crossvalidation)
0.7611 ± 0.0429
Cross-validation details (10-fold Crossvalidation)
1.328 ± 0.0168
Cross-validation details (10-fold Crossvalidation)
0.7611 ± 0.0429
Per class
Cross-validation details (10-fold Crossvalidation)
0.443 ± 0.0777
Cross-validation details (10-fold Crossvalidation)
0.4236 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.3991 ± 0.0362
Cross-validation details (10-fold Crossvalidation)
0.9421 ± 0.0816
Cross-validation details (10-fold Crossvalidation)