Run
10416605

Run 10416605

Task 41 (Supervised Classification) soybean Uploaded 11-10-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotE ncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.Var ianceThreshold,svc=sklearn.svm.classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(3)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(3)_copytrue
sklearn.impute._base.SimpleImputer(3)_fill_value-1
sklearn.impute._base.SimpleImputer(3)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(3)_strategy"constant"
sklearn.impute._base.SimpleImputer(3)_verbose0
sklearn.preprocessing.data.StandardScaler(30)_copytrue
sklearn.preprocessing.data.StandardScaler(30)_with_meantrue
sklearn.preprocessing.data.StandardScaler(30)_with_stdtrue
sklearn.svm.classes.SVC(32)_C1.0
sklearn.svm.classes.SVC(32)_cache_size200
sklearn.svm.classes.SVC(32)_class_weightnull
sklearn.svm.classes.SVC(32)_coef00.0
sklearn.svm.classes.SVC(32)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(32)_degree3
sklearn.svm.classes.SVC(32)_gamma4
sklearn.svm.classes.SVC(32)_kernel"rbf"
sklearn.svm.classes.SVC(32)_max_iter-1
sklearn.svm.classes.SVC(32)_probabilityfalse
sklearn.svm.classes.SVC(32)_random_state0
sklearn.svm.classes.SVC(32)_shrinkingtrue
sklearn.svm.classes.SVC(32)_tol0.001
sklearn.svm.classes.SVC(32)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(12)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(12)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(12)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_sparsetrue
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_verbosefalse
sklearn.preprocessing.imputation.Imputer(48)_axis0
sklearn.preprocessing.imputation.Imputer(48)_copytrue
sklearn.preprocessing.imputation.Imputer(48)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(48)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(48)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.feature_selection.variance_threshold.VarianceThreshold(26)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5954 ± 0.0219
Per class
Cross-validation details (10-fold Crossvalidation)
0.1928 ± 0.0439
Cross-validation details (10-fold Crossvalidation)
0.2195 ± 0.033
Cross-validation details (10-fold Crossvalidation)
0.0738 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.0961 ± 0
Cross-validation details (10-fold Crossvalidation)
683
Per class
Cross-validation details (10-fold Crossvalidation)
0.2987 ± 0.038
Cross-validation details (10-fold Crossvalidation)
3.8358 ± 0.0099
Cross-validation details (10-fold Crossvalidation)
0.2987 ± 0.038
Per class
Cross-validation details (10-fold Crossvalidation)
0.7681 ± 0.0416
Cross-validation details (10-fold Crossvalidation)
0.2191 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2717 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
1.24 ± 0.0334
Cross-validation details (10-fold Crossvalidation)