Run
10395968

Run 10395968

Task 3904 (Supervised Classification) jm1 Uploaded 30-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C0.07868807372403926
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.6368974296432015
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree5
sklearn.svm.classes.SVC(31)_gamma0.0003838348651347529
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5018 ± 0.0022
Per class
Cross-validation details (10-fold Crossvalidation)
0.7219 ± 0.0018
Per class
Cross-validation details (10-fold Crossvalidation)
0.0059 ± 0.0069
Cross-validation details (10-fold Crossvalidation)
0.2709 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.1928 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.3121 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
10885
Per class
Cross-validation details (10-fold Crossvalidation)
0.8229 ± 0.0397
Per class
Cross-validation details (10-fold Crossvalidation)
0.8072 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.7087 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.8072 ± 0.0008
Per class
Cross-validation details (10-fold Crossvalidation)
0.6178 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.395 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4391 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
1.1117 ± 0.0024
Cross-validation details (10-fold Crossvalidation)