Run
10392169

Run 10392169

Task 32 (Supervised Classification) pendigits Uploaded 27-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C9752.749987151079
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.10517868292249122
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree4
sklearn.svm.classes.SVC(31)_gamma0.05040735556381989
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5714 ± 0.0076
Per class
Cross-validation details (10-fold Crossvalidation)
0.2475 ± 0.0122
Per class
Cross-validation details (10-fold Crossvalidation)
0.1431 ± 0.0152
Cross-validation details (10-fold Crossvalidation)
0.1945 ± 0.0142
Cross-validation details (10-fold Crossvalidation)
0.1541 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.18 ± 0
Cross-validation details (10-fold Crossvalidation)
10992
Per class
Cross-validation details (10-fold Crossvalidation)
0.2991 ± 0.0123
Per class
Cross-validation details (10-fold Crossvalidation)
0.2297 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
3.3208 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2297 ± 0.0136
Per class
Cross-validation details (10-fold Crossvalidation)
0.856 ± 0.0151
Cross-validation details (10-fold Crossvalidation)
0.3 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3925 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
1.3085 ± 0.0116
Cross-validation details (10-fold Crossvalidation)