Run
10389672

Run 10389672

Task 3481 (Supervised Classification) isolet Uploaded 27-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C0.40314521746072823
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.2614617204682821
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree1
sklearn.svm.classes.SVC(31)_gamma0.00010783726568112908
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9314 ± 0.0056
Per class
Cross-validation details (10-fold Crossvalidation)
0.866 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.8627 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
0.8664 ± 0.0109
Cross-validation details (10-fold Crossvalidation)
0.0102 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.074 ± 0
Cross-validation details (10-fold Crossvalidation)
7797
Per class
Cross-validation details (10-fold Crossvalidation)
0.8805 ± 0.0103
Per class
Cross-validation details (10-fold Crossvalidation)
0.868 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
4.7004 ± 0
Cross-validation details (10-fold Crossvalidation)
0.868 ± 0.0108
Per class
Cross-validation details (10-fold Crossvalidation)
0.1373 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
0.1923 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1008 ± 0.0041
Cross-validation details (10-fold Crossvalidation)
0.5239 ± 0.0216
Cross-validation details (10-fold Crossvalidation)