Run
10387529

Run 10387529

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C59101e85164b1(n177=sklearn.pipeline.C59101e8516421(n178=s klearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C3 7aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e85162 07)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_tran sformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C3 7aa13132de21f))),n184=fastsklearnfeature.transformations.IdentityTransforma tion.C37aa13132ded5f,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.01
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state55386
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C59101e85164b1(n177=sklearn.pipeline.C59101e8516421(n178=sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f))),n184=fastsklearnfeature.transformations.IdentityTransformation.C37aa13132ded5f,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C59101e85164b1(n177=sklearn.pipeline.C59101e8516421(n178=sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f))),n184=fastsklearnfeature.transformations.IdentityTransformation.C37aa13132ded5f,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n177", "step_name": "n177"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n184", "step_name": "n184"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C59101e8516421(n178=sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)))(1)_n_jobsnull
sklearn.pipeline.C59101e8516421(n178=sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n178", "step_name": "n178"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n181", "step_name": "n181"}}]
sklearn.pipeline.C59101e8516421(n178=sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)),n181=sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207))(1)_memorynull
sklearn.pipeline.C37aa13132dd9ed(n179=sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n179", "step_name": "n179"}}]
sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa13132dd6dd(n180=sklearn.preprocessing._function_transformer.C59101e8516207)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n180", "step_name": "n180", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C59101e8516207(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C59101e8516207(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C59101e8516207(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C59101e8516207(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C59101e8516207(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C59101e8516207(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C59101e8516207(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C59101e8516207(1)_validatefalse
sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f))(1)_memorynull
sklearn.pipeline.C59101e85163be(n182=sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n182", "step_name": "n182"}}]
sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa13132de37e(n183=sklearn.preprocessing._function_transformer.C37aa13132de21f)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n183", "step_name": "n183", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa13132de21f(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37aa13132ded5f(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7306 ± 0.0432
Per class
Cross-validation details (10-fold Crossvalidation)
0.6428 ± 0.0456
Per class
Cross-validation details (10-fold Crossvalidation)
0.2489 ± 0.0735
Cross-validation details (10-fold Crossvalidation)
-0.3388 ± 0.0643
Cross-validation details (10-fold Crossvalidation)
0.4201 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7684 ± 0.037
Per class
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Per class
Cross-validation details (10-fold Crossvalidation)
1.1572 ± 0.0455
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
1.0808 ± 0.0349
Cross-validation details (10-fold Crossvalidation)