Run
10387318

Run 10387318

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37aa0a89a149b0(n99=sklearn.pipeline.C37aa0a89a14474(n100= sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C 37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a1 28f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_t ransformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer .C37aa0a89a13e21))),n106=fastsklearnfeature.transformations.IdentityTransfo rmation.C591010dc35409,c=sklearn.linear_model.logistic.LogisticRegression)( 1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.001
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state3980
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C37aa0a89a149b0(n99=sklearn.pipeline.C37aa0a89a14474(n100=sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21))),n106=fastsklearnfeature.transformations.IdentityTransformation.C591010dc35409,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37aa0a89a149b0(n99=sklearn.pipeline.C37aa0a89a14474(n100=sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21))),n106=fastsklearnfeature.transformations.IdentityTransformation.C591010dc35409,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n99", "step_name": "n99"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n106", "step_name": "n106"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37aa0a89a14474(n100=sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)))(1)_n_jobsnull
sklearn.pipeline.C37aa0a89a14474(n100=sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n100", "step_name": "n100"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n103", "step_name": "n103"}}]
sklearn.pipeline.C37aa0a89a14474(n100=sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)),n103=sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6))(1)_memorynull
sklearn.pipeline.C37aa0a89a12e81(n101=sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n101", "step_name": "n101"}}]
sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a89a12b45(n102=sklearn.preprocessing._function_transformer.C37aa0a89a128f6)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n102", "step_name": "n102", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a89a128f6(1)_validatefalse
sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21))(1)_memorynull
sklearn.pipeline.C37aa0a89a1411a(n104=sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n104", "step_name": "n104"}}]
sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a89a13f6f(n105=sklearn.preprocessing._function_transformer.C37aa0a89a13e21)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n105", "step_name": "n105", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a89a13e21(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C591010dc35409(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7305 ± 0.0429
Per class
Cross-validation details (10-fold Crossvalidation)
0.6415 ± 0.0458
Per class
Cross-validation details (10-fold Crossvalidation)
0.2473 ± 0.0749
Cross-validation details (10-fold Crossvalidation)
-0.3759 ± 0.0598
Cross-validation details (10-fold Crossvalidation)
0.4285 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.768 ± 0.0377
Per class
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
1.1803 ± 0.0416
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4606 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
1.0816 ± 0.0316
Cross-validation details (10-fold Crossvalidation)