Run
10387314

Run 10387314

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C591010827a18d(n51=sklearn.pipeline.C37aa0a518c4962(n52=sk learn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37a a0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351 )),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transfo rmer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0 a518c4252))),n58=fastsklearnfeature.transformations.IdentityTransformation. C591010827a162,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.1
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state61507
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C591010827a18d(n51=sklearn.pipeline.C37aa0a518c4962(n52=sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252))),n58=fastsklearnfeature.transformations.IdentityTransformation.C591010827a162,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C591010827a18d(n51=sklearn.pipeline.C37aa0a518c4962(n52=sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252))),n58=fastsklearnfeature.transformations.IdentityTransformation.C591010827a162,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n51", "step_name": "n51"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n58", "step_name": "n58"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37aa0a518c4962(n52=sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)))(1)_n_jobsnull
sklearn.pipeline.C37aa0a518c4962(n52=sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n52", "step_name": "n52"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n55", "step_name": "n55"}}]
sklearn.pipeline.C37aa0a518c4962(n52=sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)),n55=sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351))(1)_memorynull
sklearn.pipeline.C37aa0a518c391f(n53=sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n53", "step_name": "n53"}}]
sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a518c35d3(n54=sklearn.preprocessing._function_transformer.C37aa0a518c3351)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n54", "step_name": "n54", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a518c3351(1)_validatefalse
sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252))(1)_memorynull
sklearn.pipeline.C37aa0a518c45b9(n56=sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n56", "step_name": "n56"}}]
sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a518c43d7(n57=sklearn.preprocessing._function_transformer.C37aa0a518c4252)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n57", "step_name": "n57", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a518c4252(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C591010827a162(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7308 ± 0.0432
Per class
Cross-validation details (10-fold Crossvalidation)
0.6428 ± 0.0456
Per class
Cross-validation details (10-fold Crossvalidation)
0.2489 ± 0.0735
Cross-validation details (10-fold Crossvalidation)
-0.3345 ± 0.065
Cross-validation details (10-fold Crossvalidation)
0.4191 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7684 ± 0.037
Per class
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Per class
Cross-validation details (10-fold Crossvalidation)
1.1544 ± 0.046
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
1.0809 ± 0.0353
Cross-validation details (10-fold Crossvalidation)