Run
10387312

Run 10387312

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37aa0a371a7eff(n27=sklearn.pipeline.C37aa0a371a7969(n28=s klearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37 aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a647 7)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transf ormer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa 0a371a731b))),n34=fastsklearnfeature.transformations.IdentityTransformation .C8e801a26aa37,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.001
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state45924
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C37aa0a371a7eff(n27=sklearn.pipeline.C37aa0a371a7969(n28=sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b))),n34=fastsklearnfeature.transformations.IdentityTransformation.C8e801a26aa37,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37aa0a371a7eff(n27=sklearn.pipeline.C37aa0a371a7969(n28=sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b))),n34=fastsklearnfeature.transformations.IdentityTransformation.C8e801a26aa37,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n34", "step_name": "n34"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37aa0a371a7969(n28=sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)))(1)_n_jobsnull
sklearn.pipeline.C37aa0a371a7969(n28=sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n31", "step_name": "n31"}}]
sklearn.pipeline.C37aa0a371a7969(n28=sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)),n31=sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477))(1)_memorynull
sklearn.pipeline.C37aa0a371a6a4b(n29=sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n29", "step_name": "n29"}}]
sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a371a66c4(n30=sklearn.preprocessing._function_transformer.C37aa0a371a6477)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n30", "step_name": "n30", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a371a6477(1)_validatefalse
sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b))(1)_memorynull
sklearn.pipeline.C37aa0a371a7616(n32=sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n32", "step_name": "n32"}}]
sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a371a7447(n33=sklearn.preprocessing._function_transformer.C37aa0a371a731b)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n33", "step_name": "n33", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a371a731b(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C8e801a26aa37(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7305 ± 0.0429
Per class
Cross-validation details (10-fold Crossvalidation)
0.6415 ± 0.0458
Per class
Cross-validation details (10-fold Crossvalidation)
0.2473 ± 0.0749
Cross-validation details (10-fold Crossvalidation)
-0.3759 ± 0.0598
Cross-validation details (10-fold Crossvalidation)
0.4285 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.768 ± 0.0377
Per class
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
1.1803 ± 0.0416
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4606 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
1.0816 ± 0.0316
Cross-validation details (10-fold Crossvalidation)