Run
10376215

Run 10376215

Task 14954 (Supervised Classification) cylinder-bands Uploaded 25-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standa rdScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing ._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(3)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(3)_copytrue
sklearn.impute._base.SimpleImputer(3)_fill_valuenull
sklearn.impute._base.SimpleImputer(3)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(3)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(3)_verbose0
sklearn.preprocessing.data.StandardScaler(30)_copytrue
sklearn.preprocessing.data.StandardScaler(30)_with_meantrue
sklearn.preprocessing.data.StandardScaler(30)_with_stdtrue
sklearn.svm.classes.SVC(32)_C0.07077231909653779
sklearn.svm.classes.SVC(32)_cache_size200
sklearn.svm.classes.SVC(32)_class_weightnull
sklearn.svm.classes.SVC(32)_coef00.9005967890758899
sklearn.svm.classes.SVC(32)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(32)_degree4
sklearn.svm.classes.SVC(32)_gamma2.867595836610148
sklearn.svm.classes.SVC(32)_kernel"poly"
sklearn.svm.classes.SVC(32)_max_iter-1
sklearn.svm.classes.SVC(32)_probabilityfalse
sklearn.svm.classes.SVC(32)_random_state1
sklearn.svm.classes.SVC(32)_shrinkingtrue
sklearn.svm.classes.SVC(32)_tol0.001
sklearn.svm.classes.SVC(32)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(12)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(12)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(12)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_sparsetrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),svc=sklearn.svm.classes.SVC)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [false, true, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, true, true, false, true, true, true, true, true, true, true, true, true, true, true, true, true, false, true, false]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [true, false, true, true, true, true, true, true, true, true, true, true, true, true, false, true, true, true, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, true]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8284 ± 0.063
Per class
Cross-validation details (10-fold Crossvalidation)
0.8347 ± 0.0603
Per class
Cross-validation details (10-fold Crossvalidation)
0.6604 ± 0.123
Cross-validation details (10-fold Crossvalidation)
0.6586 ± 0.1233
Cross-validation details (10-fold Crossvalidation)
0.1648 ± 0.0595
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.8347 ± 0.0576
Per class
Cross-validation details (10-fold Crossvalidation)
0.8352 ± 0.0595
Cross-validation details (10-fold Crossvalidation)
0.9825 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.8352 ± 0.0595
Per class
Cross-validation details (10-fold Crossvalidation)
0.3378 ± 0.1219
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.406 ± 0.0795
Cross-validation details (10-fold Crossvalidation)
0.822 ± 0.1606
Cross-validation details (10-fold Crossvalidation)