Run
10362093

Run 10362093

Task 43 (Supervised Classification) spambase Uploaded 22-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C4988.754541737093
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.26932996097599315
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree1
sklearn.svm.classes.SVC(31)_gamma3.303996136741028
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state23379
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9236 ± 0.0163
Per class
Cross-validation details (10-fold Crossvalidation)
0.9298 ± 0.0139
Per class
Cross-validation details (10-fold Crossvalidation)
0.8525 ± 0.0294
Cross-validation details (10-fold Crossvalidation)
0.8505 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.07 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
0.4776 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
4601
Per class
Cross-validation details (10-fold Crossvalidation)
0.9299 ± 0.0135
Per class
Cross-validation details (10-fold Crossvalidation)
0.93 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
0.9674 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.93 ± 0.0136
Per class
Cross-validation details (10-fold Crossvalidation)
0.1465 ± 0.0286
Cross-validation details (10-fold Crossvalidation)
0.4886 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.2645 ± 0.0252
Cross-validation details (10-fold Crossvalidation)
0.5414 ± 0.0517
Cross-validation details (10-fold Crossvalidation)