Run
10335969

Run 10335969

Task 12 (Supervised Classification) mfeat-factors Uploaded 20-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C0.3748180931615759
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef0-0.559388501993443
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree2
sklearn.svm.classes.SVC(31)_gamma0.053799847156520725
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state37983
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8639 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.7584 ± 0.0174
Per class
Cross-validation details (10-fold Crossvalidation)
0.7278 ± 0.0183
Cross-validation details (10-fold Crossvalidation)
0.7438 ± 0.0173
Cross-validation details (10-fold Crossvalidation)
0.049 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7649 ± 0.0188
Per class
Cross-validation details (10-fold Crossvalidation)
0.755 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.755 ± 0.0165
Per class
Cross-validation details (10-fold Crossvalidation)
0.2722 ± 0.0183
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.2214 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
0.7379 ± 0.0252
Cross-validation details (10-fold Crossvalidation)